Continuum-particle hybrid coupling for mass, momentum, and energy transfers in unsteady fluid flow.

نویسندگان

  • R Delgado-Buscalioni
  • P V Coveney
چکیده

The aim of hybrid methods in simulations is to communicate regions with disparate time and length scales. Here, a fluid described at the atomistic level within an inner region P is coupled to an outer region C described by continuum fluid dynamics. The matching of both descriptions of matter is made across an overlapping region and, in general, consists of a two-way coupling scheme (C-->P and P-->C) that conveys mass, momentum, and energy fluxes. The contribution of the hybrid scheme hereby presented is twofold. First, it treats unsteady flows and, more importantly, it handles energy exchange between both C and P regions. The implementation of the C-->P coupling is tested here using steady and unsteady flows with different rates of mass, momentum and energy exchange. In particular, relaxing flows described by linear hydrodynamics (transversal and longitudinal waves) are most enlightening as they comprise the whole set of hydrodynamic modes. Applying the hybrid coupling scheme after the onset of an initial perturbation, the cell-averaged Fourier components of the flow variables in the P region (velocity, density, internal energy, temperature, and pressure) evolve in excellent agreement with the hydrodynamic trends. It is also shown that the scheme preserves the correct rate of entropy production. We discuss some general requirements on the coarse-grained length and time scales arising from both the characteristic microscopic and hydrodynamic scales.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid molecular-continuum fluid dynamics.

We describe recent developments in the hybrid atomistic/continuum modelling of dense fluids. We discuss the general implementation of mass, momentum and energy transfers between a region described by molecular dynamics and a neighbouring domain described by the Navier-Stokes equations for unsteady continuum fluid flow.

متن کامل

Fluctuations and continuity in particle-continuum hybrid simulations of unsteady flows based on flux-exchange

– This letter describes the treatment of unsteady liquid flow by a hybrid particlecontinuum scheme. The scheme couples a particle region described by molecular dynamics with a coarse-grained domain solved by continuum fluid dynamics. The particle and continuum domains overlap in the coupling region, where two-way transfer of momentum flux is established. We demonstrate that this flux-coupling s...

متن کامل

Unsteady convective flow for MHD powell-eyring fluid over inclined permeable surface

The current article has investigated unsteady convective flow for MHD non-Newtonian Powell-Eyring fluid embedded porous medium over inclined permeable stretching sheet. We have pondered the thermophoresis parameter, chemical reaction, variable thermal conductivity, Brownian motion, variable heat source and variable thermal radiation in temperature and concentration profiles. Using similar trans...

متن کامل

Two-phase Boundary Layer Flow, Heat and Mass Transfer of a Dusty Liquid past a Stretching Sheet with Thermal ‎Radiation

‎The problem of two-phase MHD boundary layer flow, heat and mass transfer over a stretching sheet with fluid-particle suspension and thermal radiation has been studied. The effect of mass transfer in dusty fluid over a stretching sheet is considered for the first time. The governing equations are reduced to a set of non-linear ordinary differential equations under suitable similarity transforma...

متن کامل

Effects of variations in magnetic Reynolds number on magnetic field distribution in electrically conducting fluid under magnetohydrodynamic natural convection

In this study the effect of magnetic Reynolds number variation on magnetic distribution of natural convection heat transfer in an enclosure is numerically investigated. The geometry is a two dimensional enclosure which the left wall is hot, the right wall is cold and the top and bottom walls are adiabatic. Fluid is molten sodium with Pr=0.01 and natural convection heat transfer for Rayleigh num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 67 4 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2003